A shape-optimized framework for kidney segmentation in ultrasound images using NLTV denoising and DRLSE
نویسندگان
چکیده
BACKGROUND Computer-assisted surgical navigation aims to provide surgeons with anatomical target localization and critical structure observation, where medical image processing methods such as segmentation, registration and visualization play a critical role. Percutaneous renal intervention plays an important role in several minimally-invasive surgeries of kidney, such as Percutaneous Nephrolithotomy (PCNL) and Radio-Frequency Ablation (RFA) of kidney tumors, which refers to a surgical procedure where access to a target inside the kidney by a needle puncture of the skin. Thus, kidney segmentation is a key step in developing any ultrasound-based computer-aided diagnosis systems for percutaneous renal intervention. METHODS In this paper, we proposed a novel framework for kidney segmentation of ultrasound (US) images combined with nonlocal total variation (NLTV) image denoising, distance regularized level set evolution (DRLSE) and shape prior. Firstly, a denoised US image was obtained by NLTV image denoising. Secondly, DRLSE was applied in the kidney segmentation to get binary image. In this case, black and white region represented the kidney and the background respectively. The last stage is that the shape prior was applied to get a shape with the smooth boundary from the kidney shape space, which was used to optimize the segmentation result of the second step. The alignment model was used occasionally to enlarge the shape space in order to increase segmentation accuracy. Experimental results on both synthetic images and US data are given to demonstrate the effectiveness and accuracy of the proposed algorithm. RESULTS We applied our segmentation framework on synthetic and real US images to demonstrate the better segmentation results of our method. From the qualitative results, the experiment results show that the segmentation results are much closer to the manual segmentations. The sensitivity (SN), specificity (SP) and positive predictive value (PPV) of our segmentation result can reach 95%, 96% and 91% respectively; As well as we compared our results with the edge-based level set and level set with shape prior method by means of the same quantitative index, such as SN, SP, PPV, which have corresponding values of 97%, 88%, 78% and 81%, 91%, 80% respectively. CONCLUSIONS We have found NLTV denosing method is a good initial process for the ultrasound segmentation. This initial process can make us use simple segmentation method to get satisfied results. Furthermore, we can get the final segmentation results with smooth boundary by using the shape prior after the segmentation process. Every step enjoy simple energy model and every step in this framework is needed to keep a good robust and convergence property.
منابع مشابه
SIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames
Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملAn Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملSegmentation of abdomen MR images using kernel graph cuts with shape priors
BACKGROUND Abdominal organs segmentation of magnetic resonance (MR) images is an important but challenging task in medical image processing. Especially for abdominal tissues or organs, such as liver and kidney, MR imaging is a very difficult task due to the fact that MR images are affected by intensity inhomogeneity, weak boundary, noise and the presence of similar objects close to each other. ...
متن کاملJoint Co-segmentation and Registration of 3D Ultrasound Images
Contrast-enhanced ultrasound (CEUS) allows a visualization of the vascularization and complements the anatomical information provided by conventional ultrasound (US). However, these images are inherently subject to noise and shadows, which hinders standard segmentation algorithms. In this paper, we propose to use simultaneously the different information coming from 3D US and CEUS images to addr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2012